Conditions beyond treewidth for tightness of higher-order LP relaxations

نویسندگان

  • Mark Rowland
  • Aldo Pacchiano
  • Adrian Weller
چکیده

Linear programming (LP) relaxations are a popular method to attempt to find a most likely configuration of a discrete graphical model. If a solution to the relaxed problem is obtained at an integral vertex then the solution is guaranteed to be exact and we say that the relaxation is tight. We consider binary pairwise models and introduce new methods which allow us to demonstrate refined conditions for tightness of LP relaxations in the Sherali-Adams hierarchy. Our results include showing that for higher order LP relaxations, treewidth is not precisely the right way to characterize tightness. This work is primarily theoretical, with insights that can improve efficiency in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing Tightness of LP Relaxations by Forbidding Signed Minors

We consider binary pairwise graphical models and provide an exact characterization (necessary and sufficient conditions observing signs of potentials) of tightness for the LP relaxation on the triplet-consistent polytope of the MAP inference problem, by forbidding an odd-K5 (complete graph on 5 variables with all edges repulsive) as a signed minor in the signed suspension graph. This captures s...

متن کامل

Treewidth-based conditions for exactness of the Sherali-Adams and Lasserre relaxations

The Sherali-Adams (SA) and Lasserre (LS) approaches are “lift-and-project” methods that generate nested sequences of linear and/or semidefinite relaxations of an arbitrary 0-1 polytope P ⊆ [0, 1]n. Although both procedures are known to terminate with an exact description of P after n steps, there are various open questions associated with characterizing, for particular problem classes, whether ...

متن کامل

On the Tightness of LP Relaxations for Structured Prediction

Structured prediction applications often involve complex inference problems that require the use of approximate methods. Approximations based on linear programming (LP) relaxations have proved particularly successful in this setting, with both theoretical and empirical support. Despite the general intractability of inference, it has been observed that in many real-world applications the LP rela...

متن کامل

Tightness of LP Relaxations for Almost Balanced Models

Linear programming (LP) relaxations are widely used to attempt to identify a most likely configuration of a discrete graphical model. In some cases, the LP relaxation attains an optimum vertex at an integral location and thus guarantees an exact solution to the original optimization problem. When this occurs, we say that the LP relaxation is tight. Here we consider binary pairwise models and de...

متن کامل

Train and Test Tightness of LP Relaxations in Structured Prediction

Structured prediction is used in areas such as computer vision and natural language processing to predict structured outputs such as segmentations or parse trees. In these settings, prediction is performed by MAP inference or, equivalently, by solving an integer linear program. Because of the complex scoring functions required to obtain accurate predictions, both learning and inference typicall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017